RLCModel
IconRLCModel
An electrical circuit model featuring an inductor in series with a parallel resistor-capacitor combination, driven by a constant voltage source.
This model represents an electrical circuit where an inductor (L) is connected in series with a parallel arrangement of a resistor (R) and a capacitor (C). This L-(R||C) configuration is subjected to a constant voltage provided by a voltage source. The key dynamics are governed by Kirchhoff's laws. Initial conditions are specified for $i_L(0) = 0A$ and $v_C(0) = 10V$. The system is expected to reach a steady state where $v_C = V_{sig} = 30V$.
Usage
RLCModel()
Behavior
\[ \begin{equation} \left[ \begin{array}{c} \mathtt{signal.y}\left( t \right) = \mathtt{source.V}\left( t \right) \\ \mathrm{connect}\left( source_{+}n, inductor_{+}p \right) \\ \mathrm{connect}\left( inductor_{+}n, resistor_{+}n, capacitor_{+}n \right) \\ \mathrm{connect}\left( resistor_{+}p, ground_{+}g, capacitor_{+}p, source_{+}p \right) \\ \mathtt{resistor.v}\left( t \right) = - \mathtt{resistor.n.v}\left( t \right) + \mathtt{resistor.p.v}\left( t \right) \\ \mathtt{resistor.i}\left( t \right) = \mathtt{resistor.p.i}\left( t \right) \\ \mathtt{resistor.p.i}\left( t \right) + \mathtt{resistor.n.i}\left( t \right) = 0 \\ \mathtt{resistor.v}\left( t \right) = \mathtt{resistor.R} \mathtt{resistor.i}\left( t \right) \\ \mathtt{capacitor.v}\left( t \right) = \mathtt{capacitor.p.v}\left( t \right) - \mathtt{capacitor.n.v}\left( t \right) \\ \mathtt{capacitor.i}\left( t \right) = \mathtt{capacitor.p.i}\left( t \right) \\ \mathtt{capacitor.p.i}\left( t \right) + \mathtt{capacitor.n.i}\left( t \right) = 0 \\ \mathtt{capacitor.C} \frac{\mathrm{d} \mathtt{capacitor.v}\left( t \right)}{\mathrm{d}t} = \mathtt{capacitor.i}\left( t \right) \\ \mathtt{inductor.v}\left( t \right) = - \mathtt{inductor.n.v}\left( t \right) + \mathtt{inductor.p.v}\left( t \right) \\ \mathtt{inductor.i}\left( t \right) = \mathtt{inductor.p.i}\left( t \right) \\ \mathtt{inductor.p.i}\left( t \right) + \mathtt{inductor.n.i}\left( t \right) = 0 \\ \mathtt{inductor.L} \frac{\mathrm{d} \mathtt{inductor.i}\left( t \right)}{\mathrm{d}t} = \mathtt{inductor.v}\left( t \right) \\ \mathtt{signal.y}\left( t \right) = \mathtt{signal.k} \\ \mathtt{source.v}\left( t \right) = - \mathtt{source.n.v}\left( t \right) + \mathtt{source.p.v}\left( t \right) \\ \mathtt{source.i}\left( t \right) = \mathtt{source.p.i}\left( t \right) \\ \mathtt{source.p.i}\left( t \right) + \mathtt{source.n.i}\left( t \right) = 0 \\ \mathtt{source.v}\left( t \right) = \mathtt{source.uV} \mathtt{source.V}\left( t \right) \\ \mathtt{ground.g.v}\left( t \right) = 0 \\ \end{array} \right] \end{equation} \]
Source
# An electrical circuit model featuring an inductor in series with a parallel resistor-capacitor combination, driven by a constant voltage source.
#
# This model represents an electrical circuit where an inductor (L) is connected in series with a parallel arrangement of a resistor (R) and a capacitor (C).
# This L-(R||C) configuration is subjected to a constant voltage provided by a voltage source. The key dynamics are governed by Kirchhoff's laws.
# Initial conditions are specified for $i_L(0) = 0A$ and $v_C(0) = 10V$. The system is expected to reach a steady state where $v_C = V_{sig} = 30V$.
example component RLCModel
# Resistor subcomponent with a resistance value of 100 Ohms.
resistor = Resistor(R=100) [{
"Dyad": {
"placement": {"diagram": {"x1": 850, "y1": 450, "x2": 950, "y2": 550, "rot": -90}}
}
}]
# Capacitor subcomponent with a capacitance value of 1 milliFarad.
capacitor = Capacitor(C=1m) [{
"Dyad": {
"placement": {"diagram": {"x1": 550, "y1": 450, "x2": 650, "y2": 550, "rot": -90}}
}
}]
# Inductor subcomponent with an inductance value of 1 Henry.
inductor = Inductor(L=1) [{
"Dyad": {
"placement": {"diagram": {"x1": 375, "y1": 250, "x2": 475, "y2": 350, "rot": 0}}
}
}]
# Constant signal generator block providing an output value of 30.
signal = BlockComponents.Constant(k=30) [{"Dyad": {"placement": {"icon": {"x1": 0, "y1": 450, "x2": 100, "y2": 550}}}}]
# Voltage source subcomponent providing the electromotive force.
source = VoltageSource() [{
"Dyad": {
"placement": {"diagram": {"x1": 200, "y1": 450, "x2": 300, "y2": 550, "rot": -90}}
}
}]
# Ground subcomponent providing the reference potential (0V).
ground = Ground() [{
"Dyad": {
"placement": {"diagram": {"x1": 550, "y1": 800, "x2": 650, "y2": 900, "rot": 0}}
}
}]
relations
initial inductor.i = 0
initial capacitor.v = 10
connect(signal.y, source.V) [{"Dyad": {"edges": [{"S": 1, "E": 2}]}}]
connect(source.n, inductor.p) [{"Dyad": {"edges": [{"S": 1, "M": [{"x": 250, "y": 300}], "E": 2}]}}]
connect(inductor.n, resistor.n, capacitor.n) [{
"Dyad": {
"edges": [
{"S": 1, "E": -1},
{"S": 2, "M": [{"x": 900, "y": 300}], "E": -1},
{"S": 3, "E": -1}
],
"junctions": [{"x": 600, "y": 300}]
}
}]
connect(resistor.p, ground.g, capacitor.p, source.p) [{
"Dyad": {
"edges": [
{"S": 1, "M": [{"x": 900, "y": 700}], "E": -1},
{"S": 2, "E": -1},
{"S": 3, "E": -1},
{"S": -1, "M": [{"x": 250, "y": 700}], "E": 4}
],
"junctions": [{"x": 600, "y": 700}]
}
}]
metadata {
"Dyad": {
"labels": [
{
"label": "RLC Model",
"x": 800,
"y": 100,
"layer": "diagram",
"attrs": {"font-size": "100"}
}
],
"tests": {
"case1": {
"stop": 10,
"expect": {"initial": {"capacitor.v": 10}, "final": {"capacitor.v": 30}}
}
}
}
}
end
Flattened Source
# An electrical circuit model featuring an inductor in series with a parallel resistor-capacitor combination, driven by a constant voltage source.
#
# This model represents an electrical circuit where an inductor (L) is connected in series with a parallel arrangement of a resistor (R) and a capacitor (C).
# This L-(R||C) configuration is subjected to a constant voltage provided by a voltage source. The key dynamics are governed by Kirchhoff's laws.
# Initial conditions are specified for $i_L(0) = 0A$ and $v_C(0) = 10V$. The system is expected to reach a steady state where $v_C = V_{sig} = 30V$.
example component RLCModel
# Resistor subcomponent with a resistance value of 100 Ohms.
resistor = Resistor(R=100) [{
"Dyad": {
"placement": {"diagram": {"x1": 850, "y1": 450, "x2": 950, "y2": 550, "rot": -90}}
}
}]
# Capacitor subcomponent with a capacitance value of 1 milliFarad.
capacitor = Capacitor(C=1m) [{
"Dyad": {
"placement": {"diagram": {"x1": 550, "y1": 450, "x2": 650, "y2": 550, "rot": -90}}
}
}]
# Inductor subcomponent with an inductance value of 1 Henry.
inductor = Inductor(L=1) [{
"Dyad": {
"placement": {"diagram": {"x1": 375, "y1": 250, "x2": 475, "y2": 350, "rot": 0}}
}
}]
# Constant signal generator block providing an output value of 30.
signal = BlockComponents.Constant(k=30) [{"Dyad": {"placement": {"icon": {"x1": 0, "y1": 450, "x2": 100, "y2": 550}}}}]
# Voltage source subcomponent providing the electromotive force.
source = VoltageSource() [{
"Dyad": {
"placement": {"diagram": {"x1": 200, "y1": 450, "x2": 300, "y2": 550, "rot": -90}}
}
}]
# Ground subcomponent providing the reference potential (0V).
ground = Ground() [{
"Dyad": {
"placement": {"diagram": {"x1": 550, "y1": 800, "x2": 650, "y2": 900, "rot": 0}}
}
}]
relations
initial inductor.i = 0
initial capacitor.v = 10
connect(signal.y, source.V) [{"Dyad": {"edges": [{"S": 1, "E": 2}]}}]
connect(source.n, inductor.p) [{"Dyad": {"edges": [{"S": 1, "M": [{"x": 250, "y": 300}], "E": 2}]}}]
connect(inductor.n, resistor.n, capacitor.n) [{
"Dyad": {
"edges": [
{"S": 1, "E": -1},
{"S": 2, "M": [{"x": 900, "y": 300}], "E": -1},
{"S": 3, "E": -1}
],
"junctions": [{"x": 600, "y": 300}]
}
}]
connect(resistor.p, ground.g, capacitor.p, source.p) [{
"Dyad": {
"edges": [
{"S": 1, "M": [{"x": 900, "y": 700}], "E": -1},
{"S": 2, "E": -1},
{"S": 3, "E": -1},
{"S": -1, "M": [{"x": 250, "y": 700}], "E": 4}
],
"junctions": [{"x": 600, "y": 700}]
}
}]
metadata {
"Dyad": {
"labels": [
{
"label": "RLC Model",
"x": 800,
"y": 100,
"layer": "diagram",
"attrs": {"font-size": "100"}
}
],
"tests": {
"case1": {
"stop": 10,
"expect": {"initial": {"capacitor.v": 10}, "final": {"capacitor.v": 30}}
}
}
}
}
end
Test Cases
Test Case case1
Related
- Examples
- Experiments
- Analyses