ChuaCircuit
IconChuaCircuit
Chua's circuit, an electronic circuit known for its chaotic dynamics.
This component represents Chua's circuit, a relatively simple electronic system capable of exhibiting complex nonlinear dynamics, including bifurcations and chaos. The circuit is constructed from two capacitors (capacitor1
, capacitor2
), one inductor (inductor
), a linear resistor (resistor
), a linear conductor (conductor
), and a single nonlinear element known as Chua's diode (represented by nonlinear_resistor
). The behavior of the circuit is typically described by a set of three first-order autonomous ordinary differential equations for the voltage across each capacitor and the current through the inductor.
The current i_NR
through the nonlinear_resistor
as a function of the voltage v_C1
across it is given by:
\[i_{NR}(v_{C1}) = Gb \cdot v_{C1} + \frac{1}{2}(Ga - Gb)(|v_{C1} + Ve| - |v_{C1} - Ve|)\]
The governing differential equations for the circuit are (using v_C1
for capacitor1.v
, v_C2
for capacitor2.v
, i_L
for inductor.i
):
\[capacitor1.C \cdot \frac{d(v_{C1})}{dt} = conductor.G \cdot (v_{C2} - v_{C1}) - i_{NR}(v_{C1})\]
\[capacitor2.C \cdot \frac{d(v_{C2})}{dt} = conductor.G \cdot (v_{C1} - v_{C2}) - i_L\]
\[inductor.L \cdot \frac{d(i_L)}{dt} = v_{C2} - resistor.R \cdot i_L\]
Initial conditions for capacitor1.v
, capacitor2.v
, and inductor.i
are specified within the relations
block to define the starting state of the simulation.
Usage
ChuaCircuit()
Behavior
\[ \begin{equation} \left[ \begin{array}{c} \mathrm{connect}\left( inductor_{+}n, resistor_{+}p \right) \\ \mathrm{connect}\left( inductor_{+}p, capacitor2_{+}p, conductor_{+}p \right) \\ \mathrm{connect}\left( conductor_{+}n, nonlinear_{resistor_{+}p}, capacitor1_{+}p \right) \\ \mathrm{connect}\left( ground_{+}g, resistor_{+}n, capacitor2_{+}n, capacitor1_{+}n, nonlinear_{resistor_{+}n} \right) \\ \mathtt{inductor.v}\left( t \right) = - \mathtt{inductor.n.v}\left( t \right) + \mathtt{inductor.p.v}\left( t \right) \\ \mathtt{inductor.i}\left( t \right) = \mathtt{inductor.p.i}\left( t \right) \\ \mathtt{inductor.p.i}\left( t \right) + \mathtt{inductor.n.i}\left( t \right) = 0 \\ \mathtt{inductor.L} \frac{\mathrm{d} \mathtt{inductor.i}\left( t \right)}{\mathrm{d}t} = \mathtt{inductor.v}\left( t \right) \\ \mathtt{resistor.v}\left( t \right) = - \mathtt{resistor.n.v}\left( t \right) + \mathtt{resistor.p.v}\left( t \right) \\ \mathtt{resistor.i}\left( t \right) = \mathtt{resistor.p.i}\left( t \right) \\ \mathtt{resistor.p.i}\left( t \right) + \mathtt{resistor.n.i}\left( t \right) = 0 \\ \mathtt{resistor.v}\left( t \right) = \mathtt{resistor.R} \mathtt{resistor.i}\left( t \right) \\ \mathtt{conductor.v}\left( t \right) = \mathtt{conductor.p.v}\left( t \right) - \mathtt{conductor.n.v}\left( t \right) \\ \mathtt{conductor.i}\left( t \right) = \mathtt{conductor.p.i}\left( t \right) \\ \mathtt{conductor.p.i}\left( t \right) + \mathtt{conductor.n.i}\left( t \right) = 0 \\ \mathtt{conductor.i}\left( t \right) = \mathtt{conductor.G} \mathtt{conductor.v}\left( t \right) \\ \mathtt{capacitor1.v}\left( t \right) = - \mathtt{capacitor1.n.v}\left( t \right) + \mathtt{capacitor1.p.v}\left( t \right) \\ \mathtt{capacitor1.i}\left( t \right) = \mathtt{capacitor1.p.i}\left( t \right) \\ \mathtt{capacitor1.n.i}\left( t \right) + \mathtt{capacitor1.p.i}\left( t \right) = 0 \\ \mathtt{capacitor1.C} \frac{\mathrm{d} \mathtt{capacitor1.v}\left( t \right)}{\mathrm{d}t} = \mathtt{capacitor1.i}\left( t \right) \\ \mathtt{capacitor2.v}\left( t \right) = \mathtt{capacitor2.p.v}\left( t \right) - \mathtt{capacitor2.n.v}\left( t \right) \\ \mathtt{capacitor2.i}\left( t \right) = \mathtt{capacitor2.p.i}\left( t \right) \\ \mathtt{capacitor2.n.i}\left( t \right) + \mathtt{capacitor2.p.i}\left( t \right) = 0 \\ \mathtt{capacitor2.C} \frac{\mathrm{d} \mathtt{capacitor2.v}\left( t \right)}{\mathrm{d}t} = \mathtt{capacitor2.i}\left( t \right) \\ \mathtt{nonlinear\_resistor.v}\left( t \right) = \mathtt{nonlinear\_resistor.p.v}\left( t \right) - \mathtt{nonlinear\_resistor.n.v}\left( t \right) \\ \mathtt{nonlinear\_resistor.i}\left( t \right) = \mathtt{nonlinear\_resistor.p.i}\left( t \right) \\ \mathtt{nonlinear\_resistor.n.i}\left( t \right) + \mathtt{nonlinear\_resistor.p.i}\left( t \right) = 0 \\ \mathtt{nonlinear\_resistor.i}\left( t \right) = ifelse\left( \mathtt{nonlinear\_resistor.v}\left( t \right) < - \mathtt{nonlinear\_resistor.Ve}, - \mathtt{nonlinear\_resistor.Ga} \mathtt{nonlinear\_resistor.Ve} + \mathtt{nonlinear\_resistor.Gb} \left( \mathtt{nonlinear\_resistor.Ve} + \mathtt{nonlinear\_resistor.v}\left( t \right) \right), ifelse\left( \mathtt{nonlinear\_resistor.v}\left( t \right) > \mathtt{nonlinear\_resistor.Ve}, \mathtt{nonlinear\_resistor.Ga} \mathtt{nonlinear\_resistor.Ve} + \mathtt{nonlinear\_resistor.Gb} \left( - \mathtt{nonlinear\_resistor.Ve} + \mathtt{nonlinear\_resistor.v}\left( t \right) \right), \mathtt{nonlinear\_resistor.Ga} \mathtt{nonlinear\_resistor.v}\left( t \right) \right) \right) \\ \mathtt{ground.g.v}\left( t \right) = 0 \\ \end{array} \right] \end{equation} \]
Source
# Chua's circuit, an electronic circuit known for its chaotic dynamics.
#
# This component represents Chua's circuit, a relatively simple electronic system
# capable of exhibiting complex nonlinear dynamics, including bifurcations and
# chaos. The circuit is constructed from two capacitors (`capacitor1`, `capacitor2`),
# one inductor (`inductor`), a linear resistor (`resistor`), a linear conductor
# (`conductor`), and a single nonlinear element known as Chua's diode (represented
# by `nonlinear_resistor`). The behavior of the circuit is typically described by a
# set of three first-order autonomous ordinary differential equations for the
# voltage across each capacitor and the current through the inductor.
#
# The current `i_NR` through the `nonlinear_resistor` as a function of the voltage `v_C1` across it is given by:
# ```math
# i_{NR}(v_{C1}) = Gb \cdot v_{C1} + \frac{1}{2}(Ga - Gb)(|v_{C1} + Ve| - |v_{C1} - Ve|)
# ```
# The governing differential equations for the circuit are (using `v_C1` for `capacitor1.v`, `v_C2` for `capacitor2.v`, `i_L` for `inductor.i`):
# ```math
# capacitor1.C \cdot \frac{d(v_{C1})}{dt} = conductor.G \cdot (v_{C2} - v_{C1}) - i_{NR}(v_{C1})
# ```
# ```math
# capacitor2.C \cdot \frac{d(v_{C2})}{dt} = conductor.G \cdot (v_{C1} - v_{C2}) - i_L
# ```
# ```math
# inductor.L \cdot \frac{d(i_L)}{dt} = v_{C2} - resistor.R \cdot i_L
# ```
# Initial conditions for `capacitor1.v`, `capacitor2.v`, and `inductor.i` are
# specified within the `relations` block to define the starting state of the simulation.
component ChuaCircuit
# Inductor of the Chua's circuit.
inductor = Inductor(L=18) [{
"Dyad": {"placement": {"icon": {"x1": 0, "y1": 200, "x2": 200, "y2": 400, "rot": 90}}}
}]
# Linear resistor, typically in series with the inductor.
resistor = Resistor(R=12.5e-3) [{
"Dyad": {"placement": {"icon": {"x1": 0, "y1": 500, "x2": 200, "y2": 700, "rot": 90}}}
}]
# Linear conductor, connecting the two capacitors.
conductor = Conductor(G=0.565) [{
"Dyad": {"placement": {"icon": {"x1": 450, "y1": 50, "x2": 650, "y2": 250, "rot": 0}}}
}]
# First capacitor in the Chua's circuit.
capacitor1 = Capacitor(C=10) [{
"Dyad": {"placement": {"icon": {"x1": 600, "y1": 350, "x2": 800, "y2": 550, "rot": 90}}}
}]
# Second capacitor in the Chua's circuit.
capacitor2 = Capacitor(C=100) [{
"Dyad": {"placement": {"icon": {"x1": 300, "y1": 350, "x2": 500, "y2": 550, "rot": 90}}}
}]
# Nonlinear resistor representing the Chua's diode, with parameters Ga, Gb, Ve.
nonlinear_resistor = NonlinearResistor(Ga=-0.757576, Gb=-0.409091, Ve=1) [{
"Dyad": {
"placement": {"icon": {"x1": 900, "y1": 350, "x2": 1100, "y2": 550, "rot": 90}}
}
}]
# Ground reference for the circuit.
ground = Ground() [{
"Dyad": {"placement": {"icon": {"x1": 450, "y1": 800, "x2": 650, "y2": 1000, "rot": 0}}}
}]
relations
initial inductor.i = 0
initial capacitor1.v = 4
initial capacitor2.v = 0
connect(inductor.n, resistor.p) [{"Dyad": {"edges": [{"S": 1, "E": 2}]}}]
connect(inductor.p, capacitor2.p, conductor.p) [{
"Dyad": {
"edges": [
{"S": -1, "M": [{"x": 100, "y": 150}], "E": 1},
{"S": -1, "E": 2},
{"S": -1, "E": 3}
],
"junctions": [{"x": 400, "y": 150}]
}
}]
connect(conductor.n, nonlinear_resistor.p, capacitor1.p) [{
"Dyad": {
"edges": [
{"S": -1, "E": 1},
{"S": -1, "M": [{"x": 1000, "y": 150}], "E": 2},
{"S": -1, "E": 3}
],
"junctions": [{"x": 700, "y": 150}]
}
}]
connect(ground.g, resistor.n, capacitor2.n, capacitor1.n, nonlinear_resistor.n) [{
"Dyad": {
"edges": [
{"S": -1, "E": 1},
{"S": -1, "M": [{"x": 100, "y": 750}], "E": 2},
{"S": -1, "M": [{"x": 400, "y": 750}], "E": 3},
{"S": -1, "M": [{"x": 700, "y": 750}], "E": 4},
{"S": -1, "M": [{"x": 1000, "y": 750}], "E": 5}
],
"junctions": [{"x": 550, "y": 750}]
}
}]
metadata {
"Dyad": {"tests": {"case1": {"stop": 50000, "expect": {"signals": ["capacitor1.v"]}}}}
}
end
Flattened Source
# Chua's circuit, an electronic circuit known for its chaotic dynamics.
#
# This component represents Chua's circuit, a relatively simple electronic system
# capable of exhibiting complex nonlinear dynamics, including bifurcations and
# chaos. The circuit is constructed from two capacitors (`capacitor1`, `capacitor2`),
# one inductor (`inductor`), a linear resistor (`resistor`), a linear conductor
# (`conductor`), and a single nonlinear element known as Chua's diode (represented
# by `nonlinear_resistor`). The behavior of the circuit is typically described by a
# set of three first-order autonomous ordinary differential equations for the
# voltage across each capacitor and the current through the inductor.
#
# The current `i_NR` through the `nonlinear_resistor` as a function of the voltage `v_C1` across it is given by:
# ```math
# i_{NR}(v_{C1}) = Gb \cdot v_{C1} + \frac{1}{2}(Ga - Gb)(|v_{C1} + Ve| - |v_{C1} - Ve|)
# ```
# The governing differential equations for the circuit are (using `v_C1` for `capacitor1.v`, `v_C2` for `capacitor2.v`, `i_L` for `inductor.i`):
# ```math
# capacitor1.C \cdot \frac{d(v_{C1})}{dt} = conductor.G \cdot (v_{C2} - v_{C1}) - i_{NR}(v_{C1})
# ```
# ```math
# capacitor2.C \cdot \frac{d(v_{C2})}{dt} = conductor.G \cdot (v_{C1} - v_{C2}) - i_L
# ```
# ```math
# inductor.L \cdot \frac{d(i_L)}{dt} = v_{C2} - resistor.R \cdot i_L
# ```
# Initial conditions for `capacitor1.v`, `capacitor2.v`, and `inductor.i` are
# specified within the `relations` block to define the starting state of the simulation.
component ChuaCircuit
# Inductor of the Chua's circuit.
inductor = Inductor(L=18) [{
"Dyad": {"placement": {"icon": {"x1": 0, "y1": 200, "x2": 200, "y2": 400, "rot": 90}}}
}]
# Linear resistor, typically in series with the inductor.
resistor = Resistor(R=12.5e-3) [{
"Dyad": {"placement": {"icon": {"x1": 0, "y1": 500, "x2": 200, "y2": 700, "rot": 90}}}
}]
# Linear conductor, connecting the two capacitors.
conductor = Conductor(G=0.565) [{
"Dyad": {"placement": {"icon": {"x1": 450, "y1": 50, "x2": 650, "y2": 250, "rot": 0}}}
}]
# First capacitor in the Chua's circuit.
capacitor1 = Capacitor(C=10) [{
"Dyad": {"placement": {"icon": {"x1": 600, "y1": 350, "x2": 800, "y2": 550, "rot": 90}}}
}]
# Second capacitor in the Chua's circuit.
capacitor2 = Capacitor(C=100) [{
"Dyad": {"placement": {"icon": {"x1": 300, "y1": 350, "x2": 500, "y2": 550, "rot": 90}}}
}]
# Nonlinear resistor representing the Chua's diode, with parameters Ga, Gb, Ve.
nonlinear_resistor = NonlinearResistor(Ga=-0.757576, Gb=-0.409091, Ve=1) [{
"Dyad": {
"placement": {"icon": {"x1": 900, "y1": 350, "x2": 1100, "y2": 550, "rot": 90}}
}
}]
# Ground reference for the circuit.
ground = Ground() [{
"Dyad": {"placement": {"icon": {"x1": 450, "y1": 800, "x2": 650, "y2": 1000, "rot": 0}}}
}]
relations
initial inductor.i = 0
initial capacitor1.v = 4
initial capacitor2.v = 0
connect(inductor.n, resistor.p) [{"Dyad": {"edges": [{"S": 1, "E": 2}]}}]
connect(inductor.p, capacitor2.p, conductor.p) [{
"Dyad": {
"edges": [
{"S": -1, "M": [{"x": 100, "y": 150}], "E": 1},
{"S": -1, "E": 2},
{"S": -1, "E": 3}
],
"junctions": [{"x": 400, "y": 150}]
}
}]
connect(conductor.n, nonlinear_resistor.p, capacitor1.p) [{
"Dyad": {
"edges": [
{"S": -1, "E": 1},
{"S": -1, "M": [{"x": 1000, "y": 150}], "E": 2},
{"S": -1, "E": 3}
],
"junctions": [{"x": 700, "y": 150}]
}
}]
connect(ground.g, resistor.n, capacitor2.n, capacitor1.n, nonlinear_resistor.n) [{
"Dyad": {
"edges": [
{"S": -1, "E": 1},
{"S": -1, "M": [{"x": 100, "y": 750}], "E": 2},
{"S": -1, "M": [{"x": 400, "y": 750}], "E": 3},
{"S": -1, "M": [{"x": 700, "y": 750}], "E": 4},
{"S": -1, "M": [{"x": 1000, "y": 750}], "E": 5}
],
"junctions": [{"x": 550, "y": 750}]
}
}]
metadata {
"Dyad": {"tests": {"case1": {"stop": 50000, "expect": {"signals": ["capacitor1.v"]}}}}
}
end
Test Cases
Test Case case1
plt
Related
- Examples
- Experiments
- Analyses