CapacitorC=FCapacitor Icon

Capacitor

Ideal electrical capacitor.

This component models a linear capacitor, a fundamental passive two-terminal electrical component used to store energy electrostatically in an electric field. The relationship between the current i flowing through the capacitor and the voltage v across its terminals is defined by the equation:

\[C der(v) = i\]

where C is the capacitance value and der(v) is the time derivative of the voltage v.

This component extends from OnePort

Usage

ElectricalComponents.Capacitor(C)

Parameters:

NameDescriptionUnitsDefault value
CCapacitance of the ideal capacitorF

Connectors

  • p - This connector represents an electrical pin with voltage and current as the potential and flow variables, respectively. (Pin)
  • n - This connector represents an electrical pin with voltage and current as the potential and flow variables, respectively. (Pin)

Variables

NameDescriptionUnits
vVoltage across the component (between pin p and pin n).V
iCurrent flowing through the component (from pin p to pin n).A

Behavior

\[ \begin{align} v\left( t \right) &= \mathtt{p.v}\left( t \right) - \mathtt{n.v}\left( t \right) \\ i\left( t \right) &= \mathtt{p.i}\left( t \right) \\ \mathtt{n.i}\left( t \right) + \mathtt{p.i}\left( t \right) &= 0 \\ C \frac{\mathrm{d} v\left( t \right)}{\mathrm{d}t} &= i\left( t \right) \end{align} \]

Source

"""
Ideal electrical capacitor.

This component models a linear capacitor, a fundamental passive two-terminal electrical component
used to store energy electrostatically in an electric field. The relationship between the
current `i` flowing through the capacitor and the voltage `v` across its terminals is
defined by the equation:

math C der(v) = i

where `C` is the capacitance value and `der(v)` is the time derivative of the voltage `v`.
"""</span>
<span class="hljs-keyword">component</span> Capacitor
&nbsp;&nbsp;<span class="hljs-keyword">extends</span> <span class="hljs-link"><a href="https://help.juliahub.com/dyad/dev/stdlib/ElectricalComponents/types/OnePort.html">OnePort</a></span>
&nbsp;&nbsp;<span class="hljs-comment">"Capacitance of the ideal capacitor"</span>
&nbsp;&nbsp;<span class="hljs-keyword">parameter</span> <span class="hljs-symbol">C</span>::<span class="hljs-link"><a href="https://help.juliahub.com/dyad/dev/stdlib/Dyad/types/Capacitance.html">Capacitance</a></span>
<span class="hljs-keyword">relations</span>
&nbsp;&nbsp;C * der(v) = i
<span class="hljs-keyword">metadata</span> {
&nbsp;&nbsp;"Dyad": {
&nbsp;&nbsp;&nbsp;&nbsp;"labels": [
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;{"label": "$(instance)", "x": 500, "y": 1100, "rot": 0},
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;{"label": "C=$(C)F", "x": 500, "y": 150, "rot": 0}
&nbsp;&nbsp;&nbsp;&nbsp;],
&nbsp;&nbsp;&nbsp;&nbsp;"icons": {"default": "dyad://ElectricalComponents/Capacitor.svg"}
&nbsp;&nbsp;}
}
<span class="hljs-keyword">end</span></code></pre>
Flattened Source
"""
Ideal electrical capacitor.

This component models a linear capacitor, a fundamental passive two-terminal electrical component
used to store energy electrostatically in an electric field. The relationship between the
current `i` flowing through the capacitor and the voltage `v` across its terminals is
defined by the equation:

math C der(v) = i

where `C` is the capacitance value and `der(v)` is the time derivative of the voltage `v`.
"""</span>
<span class="hljs-keyword">component</span> Capacitor
&nbsp;&nbsp;<span class="hljs-comment">"Positive electrical pin."</span>
&nbsp;&nbsp;<span class="hljs-symbol">p</span> = <span>Pin</span>() {
&nbsp;&nbsp;&nbsp;&nbsp;"Dyad": {
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;"placement": {"icon": {"iconName": "pos", "x1": -50, "y1": 450, "x2": 50, "y2": 550}}
&nbsp;&nbsp;&nbsp;&nbsp;}
&nbsp;&nbsp;}
&nbsp;&nbsp;<span class="hljs-comment">"Negative electrical pin."</span>
&nbsp;&nbsp;<span class="hljs-symbol">n</span> = <span>Pin</span>() {
&nbsp;&nbsp;&nbsp;&nbsp;"Dyad": {
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;"placement": {"icon": {"iconName": "neg", "x1": 950, "y1": 450, "x2": 1050, "y2": 550}}
&nbsp;&nbsp;&nbsp;&nbsp;}
&nbsp;&nbsp;}
&nbsp;&nbsp;<span class="hljs-comment">"Voltage across the component (between pin p and pin n)."</span>
&nbsp;&nbsp;<span class="hljs-keyword">variable</span> <span class="hljs-symbol">v</span>::<span>Voltage</span>
&nbsp;&nbsp;<span class="hljs-comment">"Current flowing through the component (from pin p to pin n)."</span>
&nbsp;&nbsp;<span class="hljs-keyword">variable</span> <span class="hljs-symbol">i</span>::<span>Current</span>
&nbsp;&nbsp;<span class="hljs-comment">"Capacitance of the ideal capacitor"</span>
&nbsp;&nbsp;<span class="hljs-keyword">parameter</span> <span class="hljs-symbol">C</span>::<span>Capacitance</span>
<span class="hljs-keyword">relations</span>
&nbsp;&nbsp;v = p.v - n.v
&nbsp;&nbsp;i = p.i
&nbsp;&nbsp;p.i + n.i = 0
&nbsp;&nbsp;C * der(v) = i
<span class="hljs-keyword">metadata</span> {
&nbsp;&nbsp;"Dyad": {
&nbsp;&nbsp;&nbsp;&nbsp;"labels": [
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;{"label": "$(instance)", "x": 500, "y": 1100, "rot": 0},
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;{"label": "C=$(C)F", "x": 500, "y": 150, "rot": 0}
&nbsp;&nbsp;&nbsp;&nbsp;],
&nbsp;&nbsp;&nbsp;&nbsp;"icons": {"default": "dyad://ElectricalComponents/Capacitor.svg"}
&nbsp;&nbsp;}
}
<span class="hljs-keyword">end</span></code></pre>


Test Cases

No test cases defined.